

Continuity and differentiability

Given the following function:

$$f(x, y) = \begin{cases} \frac{yx^2}{x^2+y^2} & \text{if } (x, y) \neq (0, 0) \\ 1 & \text{if } (x, y) = (0, 0) \end{cases}$$

Analyze the differentiability at the origin, justifying in detail.

Solution

To analyze the differentiability at $(0, 0)$, we follow these steps:

- Check if the function is continuous at $(0, 0)$.
- Compute the partial derivatives at $(0, 0)$.
- Verify if the function is differentiable at $(0, 0)$ using the definition.

Continuity at $(0, 0)$. We want to determine the double limit of $f(x, y)$ as $(x, y) \rightarrow (0, 0)$ by expressing it as the product of an infinitesimal function and a bounded function, and then applying the theorem of infinitesimal times bounded function.

We can rewrite $f(x, y)$ for $(x, y) \neq (0, 0)$ as:

$$f(x, y) = y \left(\frac{x^2}{x^2 + y^2} \right)$$

Consider the function:

$$g(x, y) = \frac{x^2}{x^2 + y^2}$$

We will show that $g(x, y)$ is bounded between 0 and 1 for all $(x, y) \neq (0, 0)$.

- Since $x^2 \geq 0$ and $y^2 \geq 0$, we have $x^2 + y^2 > 0$ for $(x, y) \neq (0, 0)$.
- Therefore, $g(x, y) \geq 0$.
- Also, $x^2 + y^2 \geq x^2$ implies:

$$g(x, y) = \frac{x^2}{x^2 + y^2} \leq \frac{x^2}{x^2} = 1$$

Thus:

$$0 \leq g(x, y) \leq 1$$

As $(x, y) \rightarrow (0, 0)$, the term y approaches zero. Therefore, y is an infinitesimal. Since $g(x, y)$ is bounded and y tends to zero, the product $y \cdot g(x, y)$ tends to zero:

$$\lim_{(x,y) \rightarrow (0,0)} y \cdot g(x, y) = 0$$

Therefore:

$$\lim_{(x,y) \rightarrow (0,0)} f(x, y) = \lim_{(x,y) \rightarrow (0,0)} y \cdot \left(\frac{x^2}{x^2 + y^2} \right) = 0$$

By expressing $f(x, y)$ as the product of an infinitesimal y and a bounded function $g(x, y)$, we have shown that:

$$\lim_{(x,y) \rightarrow (0,0)} f(x, y) = 0$$

However, since $f(0, 0) = 1$, we have:

$$\lim_{(x,y) \rightarrow (0,0)} f(x, y) = 0 \neq f(0, 0) = 1$$

Conclusion: The function $f(x, y)$ is not continuous at $(0, 0)$.

A function f is differentiable at $(0, 0)$ if there exists a tangent plane at that point, meaning it can be approximated by a linear function in a neighborhood of $(0, 0)$.

Since f is not continuous at $(0, 0)$, it is not differentiable at that point.

Conclusion: The function $f(x, y)$ is not differentiable at $(0, 0)$ because it is not continuous at that point.